
#16: Design Patterns. | 1

In the end, it all comes down to 0 and 1

Vineet Goel

But a good developer should care about other software developers and not about machines.
Since we, software developers, are used to be very lazy it is a good idea to get acquainted
with design patterns.

Wait, what?! New information again (Figure 1)?

Figure 1: Whaaaaaat?

Of course! Because stagnation is self-abdication. In software engineering, a design pattern
is a general repeatable solution to a commonly occurring problem in software design. A
design pattern isn’t a finished design that can be transformed directly into code. It is a
description or template for how to solve a problem that can be used in many different
situations [1].

But what are these design patterns good for?

Well, here is what you’ve got after investing a little bit of your time in researching. Design
patterns can speed up the development process by providing tested, proven development
paradigms. Effective software design requires considering issues that may not become
visible until later in the implementation. Reusing design patterns helps to prevent subtle
issues that can cause major problems and improves code readability for coders and

https://sourcemaking.com/design_patterns


#16: Design Patterns. | 2

architects familiar with the patterns [1].

So what guys did you do?

This time we decided to implement the so called Proxy Pattern. It is a structural design
pattern that lets you provide a substitute or placeholder for another object. A proxy controls
access to the original object, allowing you to perform something either before or after the
request gets through to the original object. If you would like to implement this pattern in
your own project you can check this blog post. Here is also a link to the commit in which we
made our changes. There you can check out how we implemented this pattern. The biggest
change is that we “extend” the Price interface to get a Deal interface, which has two
additional fields that we use on deals only (Have a look at it in the screenshot below). We
use this design pattern as it makes the structure of the code more clear, so it’s easier for
new developers to understand the existing code (or for us in 3 months :D)

The newly created Deal class

As we already use frameworks like Angular and Express that already contain design
patterns like e.g. observables, we didn’t find too many other design patterns that we can
implement in a useful manner. And because we use TypeScript in both the front- and
backend, showing you a class diagram of our code here wouldn’t make too much sense as
well, as it would show you 0 classes before and 1 class after the change �

https://sourcemaking.com/design_patterns
https://www.sourcecodeexamples.net/2020/08/typescript-proxy-pattern-example.html
https://github.com/Mueller-Patrick/Betterzon/pull/49

